3.8.90 \(\int \frac {1}{x \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx\)

Optimal. Leaf size=46 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x^2}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} \sqrt {c}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 46, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {446, 93, 208} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x^2}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} \sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

-(ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])]/(Sqrt[a]*Sqrt[c]))

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x \sqrt {a+b x^2} \sqrt {c+d x^2}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx,x,x^2\right )\\ &=\operatorname {Subst}\left (\int \frac {1}{-a+c x^2} \, dx,x,\frac {\sqrt {a+b x^2}}{\sqrt {c+d x^2}}\right )\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x^2}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} \sqrt {c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 46, normalized size = 1.00 \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x^2}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} \sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

-(ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])]/(Sqrt[a]*Sqrt[c]))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.77, size = 46, normalized size = 1.00 \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c+d x^2}}{\sqrt {c} \sqrt {a+b x^2}}\right )}{\sqrt {a} \sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]),x]

[Out]

-(ArcTanh[(Sqrt[a]*Sqrt[c + d*x^2])/(Sqrt[c]*Sqrt[a + b*x^2])]/(Sqrt[a]*Sqrt[c]))

________________________________________________________________________________________

fricas [B]  time = 1.22, size = 204, normalized size = 4.43 \begin {gather*} \left [\frac {\sqrt {a c} \log \left (\frac {{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt {b x^{2} + a} \sqrt {d x^{2} + c} \sqrt {a c}}{x^{4}}\right )}{4 \, a c}, \frac {\sqrt {-a c} \arctan \left (\frac {{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt {b x^{2} + a} \sqrt {d x^{2} + c} \sqrt {-a c}}{2 \, {\left (a b c d x^{4} + a^{2} c^{2} + {\left (a b c^{2} + a^{2} c d\right )} x^{2}\right )}}\right )}{2 \, a c}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*sqrt(a*c)*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*((b*c + a*
d)*x^2 + 2*a*c)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(a*c))/x^4)/(a*c), 1/2*sqrt(-a*c)*arctan(1/2*((b*c + a*d)*
x^2 + 2*a*c)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(-a*c)/(a*b*c*d*x^4 + a^2*c^2 + (a*b*c^2 + a^2*c*d)*x^2))/(a*
c)]

________________________________________________________________________________________

giac [B]  time = 0.43, size = 89, normalized size = 1.93 \begin {gather*} -\frac {\sqrt {b d} b \arctan \left (-\frac {b^{2} c + a b d - {\left (\sqrt {b x^{2} + a} \sqrt {b d} - \sqrt {b^{2} c + {\left (b x^{2} + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt {-a b c d} b}\right )}{\sqrt {-a b c d} {\left | b \right |}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

-sqrt(b*d)*b*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*x^2 + a)*sqrt(b*d) - sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d))^
2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*abs(b))

________________________________________________________________________________________

maple [B]  time = 0.02, size = 103, normalized size = 2.24 \begin {gather*} -\frac {\sqrt {d \,x^{2}+c}\, \sqrt {b \,x^{2}+a}\, \ln \left (\frac {a d \,x^{2}+b c \,x^{2}+2 a c +2 \sqrt {a c}\, \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}}{x^{2}}\right )}{2 \sqrt {a c}\, \sqrt {x^{4} b d +a d \,x^{2}+b c \,x^{2}+a c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x)

[Out]

-1/2*ln((a*d*x^2+b*c*x^2+2*a*c+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2))/x^2)*(d*x^2+c)^(1/2)*(b*x^2+
a)^(1/2)/(a*c)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c zero or nonzero?

________________________________________________________________________________________

mupad [B]  time = 3.45, size = 136, normalized size = 2.96 \begin {gather*} -\frac {\ln \left (\frac {\sqrt {b\,x^2+a}-\sqrt {a}}{\sqrt {d\,x^2+c}-\sqrt {c}}\right )-\ln \left (\frac {\left (\sqrt {c}\,\sqrt {b\,x^2+a}-\sqrt {a}\,\sqrt {d\,x^2+c}\right )\,\left (b\,\sqrt {c}-\frac {\sqrt {a}\,d\,\left (\sqrt {b\,x^2+a}-\sqrt {a}\right )}{\sqrt {d\,x^2+c}-\sqrt {c}}\right )}{\sqrt {d\,x^2+c}-\sqrt {c}}\right )}{2\,\sqrt {a}\,\sqrt {c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)),x)

[Out]

-(log(((a + b*x^2)^(1/2) - a^(1/2))/((c + d*x^2)^(1/2) - c^(1/2))) - log(((c^(1/2)*(a + b*x^2)^(1/2) - a^(1/2)
*(c + d*x^2)^(1/2))*(b*c^(1/2) - (a^(1/2)*d*((a + b*x^2)^(1/2) - a^(1/2)))/((c + d*x^2)^(1/2) - c^(1/2))))/((c
 + d*x^2)^(1/2) - c^(1/2))))/(2*a^(1/2)*c^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x \sqrt {a + b x^{2}} \sqrt {c + d x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x**2+a)**(1/2)/(d*x**2+c)**(1/2),x)

[Out]

Integral(1/(x*sqrt(a + b*x**2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________